

Moodle Output APIs

Page API

Think of the global variable $PAGE as the
container for the page's content – usually HTML.

$PAGE
● The $PAGE variable is an instance of the moodle_page

class defined in the /lib/pagelib.php file. It is created
very early in the request cycle in setup.php.

● It includes the theme and layout, the JavaScript and CSS
requirements, titles, headings, navigation position, and
things like blocks to display. In other words, the scaffolding
for the actual output.

● The page URL and the context are always required to
display output.

$PAGE (cont)
● The $PAGE->set_url() sets the page url – usually you pass a
moodle_url() object to this function

● The $PAGE->set_context() sets the context – as the contexts
discussed previously There are some other methods, including $PAGE-
>set_course() and $PAGE->set_cm (course module). Both of these
automatically set the page context as well.

● The $PAGE->set_pagelayout() method sets the page layout

● The $PAGE->set_title() method sets the page’s title, i.e. the text in the
<title> HTML tags

● The $PAGE->set_heading() sets the title for the page. The display of this
is theme-dependant.

$PAGE (cont)
You can also get page information such as:
● $PAGE->course

● $PAGE->cm (course module)

● $PAGE->title

● $PAGE->headerprinted - determine if the header has
been printed

● $PAGE->navbar and $PAGE->navigation which let you
access the navigation components.

The Output API

This API handles most of the Moodle output. It
provides several generic functions and

encompasses additional output components,
JavaScript output, and renderers and templates.

Output API Files
There are several files in the /lib folder relating to the Moodle output,
many of which you will not need. The ones of note are:
● outputcomponents.php: Classes representing HTML elements,

used by global $OUTPUT methods includes the html_writer
class

● weblib.php: Library of functions for web output library of all
general-purpose Moodle PHP functions and constants that produce
HTML output

● outputrenderers.php: Classes for rendering HTML output,
including the renderer base class that is available via the $OUTPUT
global

outputcomponents.php

This file defines a number of interfaces and
classes representing HTML elements extensively
used by global $OUTPUT methods, but available
for use generally.
● Interfaces: renderable{} and
templatable{}

outputcomponents.php (cont)
● Pictures/Icons classes: user_picture{},
help_icon{}, pix_icon_font{},
pix_icon_fontawesome{}, pix_icon{},
image_icon{}, pix_emoticon{}

● HTML Bars classes: progress_bar{},
paging_bar{}, initials_bar{}

● Tab classes: tabtree{}, tabobject{}
● Other classes for blocks, action menus, preferences and

others.

outputcomponents.php (cont)
● Form related classes:

– file_picker{}: A class representing a file picker
as per the ‘File API’ and ‘Form API’ to be discussed

– single_button{}: A class representing a simple
form with only one button

– single_select{}: Simple form with just one
select field that gets submitted automatically

– url_select{}: Simple URL selection widget

outputcomponents.php (cont)
● The HTML and JavaScript classes

– js_writer{}: Simple Javascript output class – YUI JavaScript
only; methods include function_call(), object_init(),
set_variable()

– html_writer{}: Simple html output class, 28 methods including
tag(), start_tag(), end_tag(), link(), etc

– html_table{}: Holds all the information required to render a
HTML table; outputted by html_writer::table()

– html_table_cell{}: Component representing a table cell

– html_table_row{}: Component representing a table row

weblib.php
This library defines several classes
● The base progress_trace and several extensions

to output progress status (such as
html_progress_trace)

● The moodle_url class provides useful functions to
work with Moodle URLs which we discuss further in
this course

weblib.php (cont)
● Functions :

– s() – adds quotes to HTML characters

– p() – prints quotes to HTML characters

– format_text() – when given text in a variety of format coding, this
function returns the text as safe HTML

– clean_text() – cleans raw text, removing nasties

– get_local_referer() – returns the cleaned local URL of the
HTTP_REFERER, less the URL query string parameters if required

– html_to_text() – when given HTML text, it converts it into plain text

– is_https() – check if the site is running under SSL

weblib.php (cont)
– is_in_popup() and close_window() – check if in a pop-up and close the

pop-up window respectively

– me() – returns the name of the current script, WITH the query string portion
and qualified_me(), which guesses the full URL of the current script

– notice() – prints a message and exits

– redirect() – redirects the user to another page, after printing a notice

– strip_links() – when given a string, it replaces all <a>.* by .* and
returns the string

– text_to_html() – when given plain text, it converts it into HTML as neatly
as possible

– validate_email() – validates an email address

Links

For more information on the Output API, please
see the ‘Output API’ page

https://docs.moodle.org/dev/Output_API

and the ‘Output Functions’ page

https://docs.moodle.org/dev/Output_functions

https://docs.moodle.org/dev/Output_API
https://docs.moodle.org/dev/Output_functions

Renderers & Templates
● When a plugin needs to display visual output within a page or

layout, the recommended method is to use a renderer

https://docs.moodle.org/dev/Output_renderers
● Renderers were introduced in Moodle 2.0 with the introduction of

the global $OUTPUT object which points to Moodle’s core
renderer, can be used for other non-display content generation
such as emails and data exports. They may also use templates to
generate output.

● It is worth noting that theme designers can also define renderers
and templates as well as override plugin renderers.

https://docs.moodle.org/dev/Output_renderers

Templates
● Moodle 2.9 introduced the concept of templates.
● Templates are written as mustache (http://mustache.github.io/mustache.5.html)

templates, a ‘Logic-less’ templating system. Templates should be saved in the
plugin’s templates folder and must have a .mustache extension.

● Renderers use templates via the render_from_template() method in the
form:

$this->output->render_from_template($templatename, $data)

where $data is the context referred to in the Mustache’s documentation and is
the data to be used by the template.

● Visit the Moodle ‘Templates’ documentation page (
https://docs.moodle.org/dev/Templates) for information on the how and the where,
and coding styles. In this course, templates are not covered in further detail.

http://mustache.github.io/mustache.5.html
https://docs.moodle.org/dev/Templates

Renderers
● Renderers are defined in renderer.php files in the plugin’s top

folder or, since Moodle 2.8, in the classes/ subdirectory, following
the Moodle’s auto-loading rules.

● The plugin’s renderer class will normally extend the core
plugin_renderer_base class. Code in the renderer should not
refer to the two globals $PAGE or $OUTPUT, but access the core
functionality via $this->page and $this->output variables.

● The renderer is obtained by the $PAGE->get_renderer()
method and there is a sort of unwritten rule about naming the
renderer variable $output (lower case) to show its relation to the
global $OUTPUT.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

