

Form API Revisited
The form constructor:

$myform = new myform_class(

$action,// action attribute, autodetect default

$customdata, // an array of additional data

$method, // get or post

$target, // deprecated in xHTML strict

$attributes, // HTML attributes

$editable, // if not, no input fields shown

$ajaxformdata // AJAX form data here

);

Form Elements Revisited
● Remember I said previously, only two required

steps to add an element to a form;
– Define the element - $mform->addElement();

– Set the element’s type with $mform->setType()
by specifying the input’s parameter type constants,
such as PARAM_TEXT

We will now look at other methods.

Form Elements API (cont)
$mform->addHelpButton() method - specify some text for the help
popup/tooltip and expects three arguments, namely:
● The name of the form element for which the help button is to be added. This
is not a button, but rather a help icon that is displayed next to the element's
text;

● The identifier for the help string title and contents. Both the title and the
contents should be defined in the plugin's strings file. Moodle gets the title
from the string with the identifier specified and the contents from the
identifier specified with '_help' appended. For example, if the identifier is the
username, the title value is $string[‘username’] and the help contents
is $string[‘username_help’];

● The plugin/component’s name.

Form Elements API (cont)
$mform->setDefault() - Usually, the default value of
the elements is set by the $this->set_data() method,
but this requires that the form fields mirror the database
record field names.

If not, globals or the data in the $customdata parameter
passed into the form constructor be used to set the field
default value. The custom data is accessed via the $this-
>_customdata variable e.g.

$mform->setDefault('noimages', $this->_customdata['noimages']);

Form API (cont)
$mform->addRule() - allows you to specify rules
including:
● required
● maxlength
● email
● alphanumeric
● numeric

Form Elements API (cont)
The $mform->addRule() method requires at least three parameters, but takes a total of
seven.
● The element’s name
● The error message to display if the input is invalid – usually obtained via a get_string()

call
● The rule type e.g. required
● Optionally, the data required by the rule, such as the maximum length for the maxlength rule
● Optionally, to perform validation, either ‘server’, which is the default, or ‘client’
● Optionally, a boolean value for client-side validation, determining whether the form should be

reset if there is an error – defaults to false
● Whether to force the rule to be applied, even if the target form element does not exist –

defaults to false

See the Moodle documentation’s addRule paragraph on the ‘formslib.php_Form_Definition’
page (https://docs.moodle.org/dev/lib/formslib.php_Form_Definition#addRule).

https://docs.moodle.org/dev/lib/formslib.php_Form_Definition#addRule

Form Elements API (cont)
Loosely related to the rules are two other useful
methods:
● $mform->disabledIf()

● $mform->hideif()

which both accept the same parameters that allow
you to conditionally hide or disable any group or
individual element depending on conditions provided
as one of the parameters.

Form Elements API (cont)

$mform->createElement() is usually used to
group form elements which will have a single label
and are included on one line in the form. Each
created element reference is added to an array that
is then passed to $mform->addGroup() method.

See
https://docs.moodle.org/dev/Form_API#Form_elements

https://docs.moodle.org/dev/Form_API#Form_elements

Form API (cont)
A special moodle_form method called as

$this->add_action_buttons()

adds action buttons to the form. The function can take up to two
parameters:
● A boolean parameter to specify whether to display a cancel

button – default is true
● The text for the submit button and the default is

get_string('savechanges') from the core strings

mod_moodleform extensions
● $this->standard_intro_elements(): this adds an editor to allow the

user to enter a description and, since we have said we support the
FEATURE_MOD_INTRO feature, we should include this field;

● $this->standard_coursemodule_elements(): all modules should
include this in the form, as this collects the standard data for modules. In short,
it adds the following sections to the form:

– Restrict access
– Tags
– Competencies

● $this->add_action_buttons(): this adds the submit buttons with the
option to return to the course or to display the module or to cancel the whole
operation. Again, all modules should use this functionality in order to be
consistent with other modules.

Defining Elements
Normally, there are several steps to defining an element for
a form:

1. First add the element - $mform->addElement()

2. Set the element’s type with $mform->setType()

3. Optionally, specify some text for the help popup/tooltip
using $mform->addHelpButton()

4. Optionally, set the elements default value using
$mform->setDefault()

Form API Revisited (cont)
The most useful form methods are: (but, remember, there are many more,
so it is worth having a look at the moodleform class code):

● display(), render() – print or get the form HTML

● set_data() – apply existing database table data values to the form
elements; the fields must match for this to work

● validation() – function to validate the submitted data; errors mean
the form is re-displayed with errors highlighted

● get_data() – a special wrapper method to get the submitted data or
null if no data has been submitted or validation fails

● is_cancelled() – checks if the form has been cancelled

● is_submitted() – check if the form has been submitted.

Form API Revisited (cont)
Generally, the process is as follows:

1. Initiate the form, e.g. $myform = new myformclass()

2. Optionally read data from the database and apply it to the form using the
set_data() method.

3. Check if the form has been cancelled using the is_cancelled() method and act
accordingly – usually by redirecting the user.

4. Check if data has been submitted with the get_data() method and process if
necessary.

5. If not cancelled or submitted, display the form with the display() method.

See the Moodle documentation's ‘lib/formslib.php Usage’ page (
https://docs.moodle.org/dev/lib/formslib.php_Usage) for another description of this
process.

https://docs.moodle.org/dev/lib/formslib.php_Usage

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

