

File API

Moodle 2.0 introduced a new file system for
Moodle. The API is specifically for internal files
Related to the this API is the repository plugins
functionality which deals with file stores outside

the site’s files system.
Internal Files are stored in a combination of
physical files and a database table record.

File API (cont)
● Many of the File API’s functions are defined in the
/lib/filelib.php file.

● Additional functionality is defined in the filestorage
class (/lib/filestorage/file_storage.php) for low-level
file activities,such as retrieving the file contents.

● Also the filebrowser class
(/lib/filebrowser/file_browser.php) for browsing files
in code.

File API (cont)
The usual process when working with files is:
● To create a draft area for the user;
● If the files are existing files, as in the case of they being about

to be replaced or edited, to copy the files into the draft area.
● Once the user commits to saving the file, to copy the draft

file(s) back to the plugin’s file area;
● When any user attempts to access the file(s), to deliver the

file after doing relevant access checks.

File API (cont)
Plugin's files need to be stored in plugin’s file area, similar to
directories but not quite the same. A file area is defined by:
● A contextid – the context in which the file is being saved.

● The plugin’s Frankenstyle name;
● A file area type – this is for the plugin to determine. For example,

you could have an images type and another for non-image files.
Most simple plugins just have one type;

● A unique itemid – again something the plugin determines, it
might be the record id of a related record in another table;
otherwise use 0.

File API (cont)
To create a link to a file, plugins generally call
moodle_url::make_pluginfile_url() with the following parameters:

● contextid

● component – i.e. plugin

● area
● itemid

● pathname

● filename
● forcedownload

The resultant link will be in the format:

/pluginfile.php/$contextid/$component/$filearea/arbitrary/extra/
information/filename.ext

File API (cont)
● Moodle has several files relating to the delivery of files:

file.php, draftfile.php, userfile.php, and
pluginfile.php which is the one in the link.

● pluginfile.php will call a function
<pluginname>_pluginfile() in the plugin’s
lib.php when requested as so all plugins that store
and deliver files have to define this callback function.

File API (cont)
The callback should expect the following parameters:
● course – the course object (will be null if not applicable)

● cm – the course module object (will be null if not applicable)

● context – the context based on the context id – could be system context

● filearea – the name of the file area

● args –itemid, path – the function decides what it does with these

● forcedownload – whether or not to force download

● options – additional options affecting the file serving, the function decides
what to do with these; usually, it is not defined

Return false if the file is not found. Otherwise, send the file using the File API’s
send_stored_file() function after processing.

File API (cont)
The file request processing will:
● Check context is relevant
● Check the file area
● Check user is logged in – if applicable
● Check for any required capabilities
● Identify $itemid, $filepath, $filename from the

forward slashed separated $args parameter

● Attempt to retrieve the file from the file store and return results
– either false or using the send_stored_file() function.

Links
● ‘File API’ page

(https://docs.moodle.org/dev/File_API).
● Repository plugins

(https://docs.moodle.org/dev/Repository_plugins)
● ‘File API Internals’ page

(https://docs.moodle.org/dev/File_API_internals).

https://docs.moodle.org/dev/File_API
https://docs.moodle.org/dev/Repository_plugins
https://docs.moodle.org/dev/File_API_internals

File Form Elements
Moodle provides 3 custom elements to work with file uploads – they
are closely tied to the File API
● filepicker – a more appropriate replacement for the HTML file

element, but really useful to get a file that is to be processed and
then discarded, such as a CSV upload.

● filemanager – the recommended way to get uploaded files and
save them to the appropriate file area.

● editor – this is actually a specialised text-area with an HTML
editor (so not strictly a file element), but it allows the use of files
such as images, sounds, and video within that HTML (not covered in
this course).

Element Options
File elements have an optional options array parameter and the possible options are:

● subdirs (not applicable for file picker) – whether to include subdirectories
● maxbytes – maximum file size
● areamaxbytes (not applicable for file picker) – maximum file area size
● maxfiles (not applicable for file picker) – the maximum number of files
● accepted_types – Defaults to ‘*’, which is all files. You can use file extensions, e.g.
array('.txt', '.jpg', 'audio') or, alternatively, file types, such as
array('audio', 'video', 'document')

● return_types – Value is one or a combination of file ‘types’ constants –
FILE_EXTERNAL, FILE_INTERNAL, FILE_REFERENCE or
FILE_CONTROLLED_LINK – will be discussed later, we use FILE_INTERNAL
which is a file saved internally in Moodle.

The editor also has other specific editor options.

File Types
These constants are actually defined in the /repository/lib.php file.
● Files that are uploaded to Moodle’s internal file system are of the type
FILE_INTERNAL.

● Where the file remains in the external repository and is accessed from
there as a link, it is defined as of the FILE_EXTERNAL type.

● A variation of this type is the FILE_REFERENCE type, which refers to
files that remain in the external repository, but may be cached locally.

● FILE_CONTROLLED_LINK type was introduced in Version 3.3. The
documentation explains that ‘the file remains in the external repository’
– not very clear as exactly what this is.

filepicker
● Adding the element to the form:

$mform->addElement('filepicker', 'elementname',
$elementprompt, $attributes, $options);

● When the form has been submitted, get the file content:

$content = $mform->get_file_content($elementname);

NB: The underlying PHP call is file_get_contents(), so the
contents are returned as a string. Watch out if this is a CSV file and
you want to process it.

● Get the filename:

$name = $mform->get_new_filename($elementname);

filemanager
Closely tied to the File API, process is:

1. Get a draft file area id with
file_get_submitted_draft_itemid(). The value is
ultimately used to populate the value of the filemanager
element.

2. Prepare the draft file area using the id obtained in step 1 by calling
file_prepare_draft_area(), existing files need be copied
into the area before form is displayed, to be discussed later

3. On submission, the files are moved back to the file storage with
file_save_draft_area_files()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

