

Data Manipulation API

This API defines the functionality to access database
tables. All the functionality is accessed via the global $DB
object, which is an instance of the moodle_database

class and is initialised – including opening the connection
– from the settings in the /config.php file. Apart from the
usual querying, updating, inserting, and deleting records
in database tables, the API provides many compatibility
public methods, as Moodle supports several databases.

Cross-DB Compatibility
Use the SQL compatibility methods to ensure the SQL is compatible with the
supported databases (see
https://docs.moodle.org/dev/Data_manipulation_API#Cross-DB_compatibility) e.g.
●get_in_or_equal() - Constructs 'IN()' or '=' SQL fragment and returns an SQL
snippet and a parameter array to specify if a value is IN the given list of items.

●sql_concat() - Returns a snippet to do CONCAT between the field names
passed and with sql_concat_join(), using passed in character(s) as the
separator.

●sql_isempty() and sql_isnotempty() - Returns the snippet to query
whether one field is empty or not.

●sql_like() and sql_like_escape() - Returns 'LIKE' snippet of a query
and/or escape the LIKE special characters such as '_' or '%'.

●sql_substr() - Returns the proper snippet used to extract substrings.

https://docs.moodle.org/dev/Data_manipulation_API#Cross-DB_compatibility

Handling Query Results
It is possible to control how database query results are handled by using
the strictness parameter which is supported by several methods that
expect a single record.

● Passing the constant IGNORE_MISSING as the strictness parameter will
return a boolean false if a record is not found or generate a debugging
message if multiple records are found (this is the default behaviour).

● Passing MUST_EXIST will, instead, throw an exception.

● There is another constant, IGNORE_MULTIPLE, that will only return the
first of multiple records, but this is not recommended and may be deprecated in
the future.

SQL Parameters
Just about all the data manipulation methods expect a placeholder
($params) parameter, which is an array of values to fill placeholders in
SQL statements. Using placeholders avoids issues with SQL-injection
and invalid SQL quoting and helps maintain cross-DB compatible code.
There is support for two types of placeholders.

● The SQL_PARAMS_QM replaces the ‘?' placeholders in the SQL and is
single-dimensional. It must contain the same number of items as
placeholders in the SQL and replacement is sequential.

● The SQL_PARAMS_NAMED is a multidimensional array, with the keys
matching the placeholders in the SQL. The SQL placeholders are the
key names with a ‘:’ (colon) prefix.

Stipulating Conditions
There are several ways to specify the conditions for SQL
queries.
● The simplest form is a multidimensional array
$conditions, with the field name as the key and the value
as the field’s value. The array items are joined with the AND
statement in the WHERE clause, so all conditions must be
met to generate a result.

● A string containing the WHERE conditions (xxx_select())

● A full SQL command (xxx_sql()).

Methods
● Getting a single record - get_record(), get_record_select(),
get_record_sql()

● Getting multiple records - get_records(), get_records_select(),
get_records_sql(), get_records_list()

● Getting data as key/value pairs in an associative array -
get_records_menu(), get_records_select_menu(),
get_records_sql_menu()

● Counting records that match the given criteria - count_records(),
count_records_select(), count_records_sql()

● Checking if a given record exists - record_exists(),
record_exists_select(), record_exists_sql()

Methods (cont)
● Getting a particular field value from one record - get_field(),
get_field_select(), get_field_sql()

● Getting field values from multiple records -
get_fieldset_select(), get_fieldset_sql()

● Setting a field value - set_field(), set_field_select()

● Deleting records - delete_records(),
delete_records_select()

● Inserting records (objects) - insert_record(),
insert_records()

● Updating records (objects) - update_record()

Record Sets
Where there is a large number of records returned, it is best to
use the recordset methods that return an iterator which must
be closed when no longer required.
● get_recordset()

● get_recordset_select()

● get_recordset_sql()

● get_recordset_list()

A list of all the query and manipulation methods and their
expected parameters is in the relevant handout in this lesson.

Transactions
● start_delegated_transaction(), which starts the

transaction and returns a transaction object. Delegated
database transactions can be nested; the outermost
transaction will only be committed if all the nested
delegated transactions commit successfully. Any rollback
in the nested transactions will roll back all the transactions.

● allow_commit() method will commit the transaction

● rollback() method expects the exception as the
parameter

Links & Handout

Data manipulation API
https://docs.moodle.org/dev/Data_manipulation_API

Reminder: Handout of DB Manipulation Functions in this
lesson.

https://docs.moodle.org/dev/Data_manipulation_API

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

